Scientists trick bacteria incorporate
Andhra Pradesh ~ India ~ International ~ City ~ Entertainment ~ Business ~ Sports ~ Technology ~ Health ~ Features
Twitter ~ Facebook
Home / Technology News / 2010 / October 2010 / October 9, 2010
Scientists trick bacteria to incorporate foreign small molecules into cell wall
RSS / Print / Comments

Pneumonia

Scientists trick bacteria to incorporate foreign small molecules into cell wall

Tamiflu may prevent pneumonia in swine flu patients

China Pharma Holdings, Inc. Successfully Completes Phase I Clinical Trials of New Anti-Drug-Resistance Antibiotic

More on Pneumonia

Protein

Reportlinker Adds Global Milk Industry

Cellular defect that leads to cancer discovered

Why family history ups Alzheimers risk - especially from the maternal side

More on Protein

Technology News

Study to find whether leptin helps type 1 diabetic patients
To determine whether adding the hormone leptin to standard insulin therapy might help rein in the tumultuous blood-sugar levels of people with type 1 (insulin-dependent) diabetes, a clinical trial at UT Southwestern Medical Center is being carried out. ANI

Why deaf have 'super vision'
Researchers have found reasons for the enhanced abilities in the remaining senses of deaf people. ANI

Tsunami risk higher than expected in LA, other major cities
A new study has revealed that the risk of destructive tsunamis is in places such as Kingston, Istanbul, and Los Angeles. ANI

Scientists trick bacteria to incorporate foreign small molecules into cell wall

Researchers at Yale University have artificially created the cell wall of the Staphylococcus aureus bacteria, tricking it into incorporating foreign small molecules and embedding them within the cell wall.


Washington, Oct 9 : Researchers at Yale University have artificially created the cell wall of the Staphylococcus aureus bacteria, tricking it into incorporating foreign small molecules and embedding them within the cell wall.

The finding represents the first time scientists have engineered the cell wall of a pathogenic "Gram-positive" bacteria-organisms responsible not only for Staph infections but also pneumonia, strep throat and many others.

The discovery could pave the way for new methods of combating the bacteria responsible for many of the most infectious diseases.

The team engineered one end of their small molecules to contain a peptide sequence that would be recognized by the bacteria.

In Staphylococcus aureus, an enzyme called sortase A is responsible for attaching proteins to the cell wall.

"We sort of tricked the bacteria into incorporating something into its cell wall that it didn't actually make. It's as if the cell thought the molecules were its own proteins rather than recognizing them as something foreign," said David Spiegel, a Yale chemist who led the study.

The scientists focused specifically on the cell wall because it contains many of the components the cell uses to relate to its environment, said Spiegel.

"By being able to manipulate the cell wall, we can in theory perturb the bacteria's ability to interact with human tissues and host cells," he added.

The team used three different small molecules in their experiment - including biotin, fluorescein and azide - but the technique could be used with other molecules, as well as with other types of bacteria, said Spiegel.

Another advantage to the new technique is that the scientists did not have to first genetically modify the bacteria in any way in order for them to incorporate the small molecules, meaning the method should work on naturally occurring bacteria in the human body.

Staph infections, such as the drug-resistant MRSA, have plagued hospitals in recent years. More Americans die each year from Staphylococcus aureus infections alone than from HIV/AIDS, Parkinson's disease or emphysema.

Being able to engineer the cell walls of not only Staphylococcus aureus but a whole family of bacteria could have widespread use in combating these illnesses, Spiegel said, adding that any number of small molecules could be used with their technique.

"For example, if we tag these bacteria with small fluorescent tracer molecules, we could watch the progression of disease in the human body in real time."

The molecules could also be used to help recruit antibodies that occur naturally in the bloodstream, boosting the body's own immune response to diseases that tend to go undetected, such as HIV/AIDS or cancer.

"This technique has the potential to help illuminate basic biological processes as well as lead to novel therapeutics from some of the most common and deadly diseases affecting us today," said Spiegel.

The study has been described online in the journal ACS Chemical Biology.

ANI

Link to this page

Suggested pages for your additional reading
AndhraNews.net on Facebook






© 2000-2017 AndhraNews.net. All Rights Reserved and are of their respective owners.
Disclaimer, Terms of Service & Privacy Policy | Contact Us