H1N1 spreads from person
Andhra Pradesh ~ India ~ International ~ City ~ Entertainment ~ Business ~ Sports ~ Technology ~ Health ~ Features
Breast Cancer ~ Swine Flu ~ Lung Cancer ~ Heart attack ~ Pregnancy ~ All Health Topics
Home / Health News / 2009 / July 2009 / July 3, 2009
Why H1N1 flu spreads from person to person less effectively than other flu viruses
RSS / Print / Comments

Swine Flu

Tamiflu may prevent pneumonia in swine flu patients

Chewed gum wall in US is world's 2nd most unhygienic tourist attraction

Comic books could educate young men about testicular cancer: Study

More on Swine Flu

Massachusetts Institute of Technology

Revenge cuts both ways in the Israeli-Palestinian conflict: Study

Analysts predict turbulence during N.Korean succession battle

Hindus laud City of Cambridge for yoga pictures on parking tickets envelopes

More on Massachusetts Institute of Technology

Health News

New study confirms smoking, cancer link (reissue)
Taking up smoking results in epigenetic changes associated with the development of cancer, UK scientists have reported. ANI

Blame your mom for your muffin top or thunder thighs
A new study by an international team of researchers, including Cambridge and Oxford experts, has revealed that our propensity to be apple or pear-shaped is at least partly in our genes. ANI

Chemicals in mother's blood linked to child's obesity
A team of scientists has revealed that babies whose mothers had relatively high levels of the chemical DDE in their blood were more likely to both grow rapidly during their first 6 months and to have a high body ma*s index (BMI) by 14 months. ANI

Why H1N1 flu spreads from person to person less effectively than other flu viruses

Scientists in the US have come up with an genetic explanation for why the new H1N1 swine flu virus has spread from person to person less effectively than other flu viruses.


Washington, July 3 : Scientists in the US have come up with an genetic explanation for why the new H1N1 "swine flu" virus has spread from person to person less effectively than other flu viruses.

A collaborative team of researchers from the Massachusetts Institute of Technology (MIT) and the Centers for Disease Control and Prevention have found that the H1N1 strain, which circled the globe this spring, has a form of surface protein that binds inefficiently to receptors found in the human respiratory tract.

"While the virus is able to bind human receptors, it clearly appears to be restricted," says Ram Sasisekharan, the Edward Hood Taplin Professor and director of the Harvard-MIT Division of Health Sciences and Technology (HST) and the lead MIT author of the paper.

He points out that that restricted binding, along with a genetic variation in an H1N1 polymerase enzyme, which was first reported about three weeks ago in Nature Biotechnology, explains why the virus has not spread as efficiently as seasonal flu.

However, flu viruses are known to mutate rapidly, so there is cause for concern if H1N1 undergoes mutations that improve its binding affinity.

"We need to pay careful attention to the evolution of this virus," says Sasisekharan.

For their study, the researchers compared the new H1N1 strain to several seasonal flu strains, including some milder H1N1 strains, and to the virus that caused the 1918 flu pandemic.

They found that the new strain is able to bind to the predominant receptors in the human respiratory tract, known as umbrella-shaped alpha 2-6 glycan receptors.

However, binding efficiency varies between flu strains, and that variation is partly determined by the receptor-binding site (RBS) within the hemagglutinin protein.

The researchers found that the new H1N1 strain's RBS binds human receptors much less effectively than other flu viruses that infect humans.

They also observed that the new H1N1 strain spreads inefficiently in ferrets, which accurately mimics human influenza disease including how it spreads or transmits in humans.

When the ferrets were in close contact with each other, they were exposed to enough virus particles that infection spread easily. However, when they were kept separate and the virus could spread only through airborne respiratory droplets, the illness spread much less effectively.

Sasisekharan says that this is consistent with the transmission of this virus seen in humans so far, considering that most outbreaks have occurred in limited clusters, sometimes within a family or a school but not spread much further.

"One of the big payoffs of long-term investments in carbohydrate biology and chemistry research is an understanding of the relationships between cell surface carbohydrate structure and viral infectivity. Tools developed in building such understanding help in the response to events like the recent H1N1 outbreak," said Jeremy M. Berg, director of the National Institute of General Medical Sciences of the National Institutes of Health, which partly funded the research.

The researchers also pinpointed a second mutation that impairs H1N1's ability to spread rapidly.

While recent studies have shown that a viral RNA polymerase known as PB2 is critical for efficient influenza transmissibility, the new H1N1 strain does not have the version of the PB2 gene necessary for efficient transmission.

A research article describing the study has been published in the online edition of the journal Science.

ANI

Link to this page

Suggested pages for your additional reading
AndhraNews.net on Facebook






© 2000-2017 AndhraNews.net. All Rights Reserved and are of their respective owners.
Disclaimer, Terms of Service & Privacy Policy | Contact Us